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[1] In this study, we present first‐order (in terms of the log conductivity variance) analytical
solutions to displacement covariances Xij and macrodispersion coefficients Dij for transport
of conservative solutes in two‐dimensional, bounded heterogeneous porous media. These
solutions are presented as infinity series and are explicit functions of the statistics of the
log hydraulic conductivity. Using numerical examples, the convergence of these solutions
in terms of the number of terms in truncated finite summations is first investigated, and
the accuracy of these solutions is examined by comparing them with results from Monte
Carlo simulations and the semianalytical solutions of Osnes (1998). Through several
examples, the general features of time‐dependent Xij and Dij are discussed. Unlike in
unbounded domains, the longitudinal macrodispersivity D11 for bounded domains does
not approach an asymptotic value at large dimensionless time but instead increases quickly
near the downstream constant head boundary. In addition, D11 for bounded domains is
always larger than that in unbounded domains, and accordingly, the transverse
macrodispersivity D22 in bounded domains is smaller than that in unbounded domains.
These differences stem from the lateral no‐flow boundaries in our bounded domain models.
We also investigated the effect of domain sizes on Xij and Dij. Our study shows that both
Xij and Dij depend not only on the dimensionless size of the domain but also on its aspect
ratio. The dependence of Xij and Dij on the particles’ initial location has also been
investigated at detail. Our results indicate that while this dependence is very small forX11 and
D11, the release location has a significant impact on both X22 and D22. Our solutions to both
displacement covariances and macrodispersivity are compared against those derived from
tracer test data at the Borden site. The comparison shows that our solutions are quite close
to observed data, indicating that they may be applicable to predict solute transport at the
field scale.

Citation: Lu, Z., A. V. Wolfsberg, Z. Dai, and C. Zheng (2010), Characteristics and controlling factors of dispersion in bounded
heterogeneous porous media, Water Resour. Res., 46, W12508, doi:10.1029/2009WR008392.

1. Introduction

[2] Accurate description of contaminant transport in het-
erogeneous porous media is very important for remediating
contaminates in soils and aquifers. The advection‐dispersion
equation is the most widely used governing equation for
describing solute transport in subsurface. Advection represents
transport of solutes with fluid flow, while dispersion (hydro-
dynamic dispersion) includes mechanical and molecular dif-
fusion. The former is caused by variations of fluid velocity
in the pore space of porous media, and the latter is due
to molecules’ random motion. Effective dispersivity is a
parameter characterizing dispersion.
[3] Dependency of effective dispersivity on travel distance

(or travel time) has been a major topic in both theoretical and
case studies in the last two decades. A number of case studies

have been conducted to investigate the scale effect in effective
dispersivity at the column scale [Khan and Jury, 1990; Porro
et al., 1993; Zhang et al., 1994; Zhang and Neuman, 1995;
Silliman and Simpson, 1987; Pang and Hunt, 2001] and the
field scale [Sauty, 1980; Sudicky et al., 1983; Freyberg, 1986;
Gelhar et al., 1992]. At the column scale, it has been observed
that effective dispersivity increases with travel distance for
both homogeneous and heterogeneous columns. Although
some of field studies indicate inconsistent relationship between
effective dispersivity and travel distance or travel time [Leland
and Hillel, 1982; Taylor and Howard, 1987], most of these
studies do show the dependence of effective dispersivity on
travel distance from the source of solutes [Sauty, 1980; Sudicky
et al., 1983; Freyberg, 1986; Gelhar et al., 1992]. These
studies indicate that effective dispersivity increases with travel
distance at early time until a characteristic value is reached, and
then it remains a constant. Effective dispersivities (or macro-
dispersivities) estimated from field‐scale tracer tests are often
much larger than those measured in the laboratory for the same
type of porous materials.
[4] Several theoretical efforts have been made to account

for this dependence of effective dispersivity on travel time or
travel distance. Most of these theories rely on the heteroge-
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neous nature of the porous media. Stochastic analyses
[Gelhar et al., 1979;Gelhar and Axness, 1983;Dagan, 1984;
Neuman et al., 1987; Dagan, 1988; Rubin, 1990; Schwarze
et al., 2001; Dai et al., 2007] usually relate macro-
dispersivity to the spatial correlation structure of the hydraulic
conductivity of the porous media. According to these sto-
chastic models, macrodispersivity is a function of time at the
early time andwill reach an asymptotic constant value after all
scales of variability have been experienced. Gelhar and
Axness [1983] conducted three‐dimensional stochastic anal-
ysis of macrodispersion in heterogeneous porous media.
Their analysis yields a finite asymptotic longitudinal effective
dispersivity. Neuman et al. [1987] developed a stochastic
theory of field‐scale Fickian dispersion in anisotropic porous
media. Their theory also shows that the field‐scale longitu-
dinal effective dispersivity reaches a nonzero constant value
asymptotically. Dagan [1988] suggested that the travel dis-
tance required to reach asymptotic constant value is about
tens of integral scales of the horizontal conductivity field.
[5] Most theoretical studies on macrodispersivities are

based on the assumption that the domain of interest is
unbounded. It has been shown that the boundary effect is very
small if the domain is sufficient large comparing to the cor-
relation scales and/or if the solute transport occurs in regions
that are at least several to tens of correlation lengths away
from the boundary. However, it is not uncommon in literature
that those stochastic theories developed for unbounded
domains were applied directly to some field or experimental
studies where the domain size was as small as a few corre-
lation scales [Keller et al., 1995]. This is because there is no
handy analytical solution available to effective dispersivity
for bounded, randomly heterogeneous conductivity fields.
[6] Osnes [1998] derived analytical solutions to velocity

moments for steady state uniform mean flow in rectangular
domains with an isotropic separable exponential covariance
of the log hydraulic conductivity. The solute displacement
covariances Xij were expressed as integrals of the velocity
covariances, which need to be evaluated numerically. Expres-
sions for macrodispersivities were not given. In this study, on
the basis of first‐order analytical solutions of velocity covari-
ance functions in two‐dimensional bounded heterogeneous
porous media [Lu and Zhang, 2005], we derived analytical
expressions for displacement covariances Xij and macro-
dispersion coefficients Dij (or macrodispersivities) under
assumptions that the mean flow is uniform and that the
covariance of the conductivity field is anisotropic separable
exponential. These solutions are presented as infinite series
and are much concise than Osnes’s solutions [Osnes, 1998].
[7] Because these analytical solutions are accurate only up

to first order in terms of the log conductivity variance (or
second order in the standard deviation of the log conductiv-
ity), Monte Carlo simulations have been conducted to assess
their accuracy. Our solutions were also compared with those
of Osnes [1998] and Dagan [1984] for the case presented by
Osnes [1998]. We then discussed the general characteristics
of our first‐order solutions, including the difference from
their counterparts for unbounded domains and the depen-
dence of displacement covariances and macrodispersivities
on the travel distance or travel time. In particular, the effects
of the domain aspect ratio and the particles’ release location
on Xij and Dij have been investigated at detail.
[8] The analytical solutions presented in this study provide

a rigorous means to explore the characteristics of dispersive

transport in bounded, randomly heterogeneous porous media
under uniform mean flow conditions, and to quantify the
sensitivity of the scale‐dependent effective dispersivity to key
parameters of the porous media, including the variance of log
hydraulic conductivity, correlation scales, domain geometry,
and relative source location.

2. Mathematical Development

[9] We consider steady state saturated flow in two‐
dimensional, bounded, randomly heterogeneous porous media
governed by the following equation

r � KsðxÞrhðxÞ½ � ¼ 0; x 2 W ¼ ½0; L1� � ½0; L2�; ð1Þ

where h is the hydraulic head, Ks is the saturated hydraulic
conductivity, x = (x1, x2)

T is the vector of Cartesian coor-
dinates, and L1 and L2 are lengths of the simulation domain in
x1 and x2 directions, respectively. The boundary conditions
associated with (1) are given as

hðx1 ¼ 0; x2Þ ¼ H1; hðx1 ¼ L1; x2Þ ¼ H2; ð2Þ

@hðxÞ
@x2

����
x2¼0

¼ 0;
@hðxÞ
@x2

����
x2¼L2

¼ 0; ð3Þ

where the prescribed head H1 and H2 are assumed to be
deterministic constants. Without loss of generality, it is
assumed H1 > H2, and the mean flow is in the x1 direction.
[10] It is assumed that the hydraulic conductivity Ks is a

spatially correlated random function. In this case, the
hydraulic head in (1)–(3) is also a random quantity, and thus
these equations become stochastic. A number of methods
have been developed to solve stochastic equations, including
Monte Carlo simulations, moment equation methods [e.g.,
Guadagnini and Neuman, 1999a, 1999b], moment methods
based on Karhunen‐Loève decomposition [Zhang and
Lu, 2004], spectral methods [Yeh et al., 1985; Li and
McLaughlin, 1991], and probability collocation methods
[Li and Zhang, 2007; Li et al., 2009]. For this particular
problem, velocity moments (mean and covariance) can be
solved analytically, providing the covariance structure of the
conductivity is separable exponential [Osnes, 1995; Lu and
Zhang, 2005]. In sections 2.1–2.3, for completeness we first
give the autocovariance of velocity fields as in the work by
Lu and Zhang [2005], we then derive analytical solutions to
displacement covariances and macrodispersivities.

2.1. Velocity Covariance

[11] The flux in porous media is related to the hydraulic
head and the hydraulic conductivity by Darcy’s law:

qðxÞ ¼ �KsðxÞrhðxÞ: ð4Þ

Following themomentmethods, we assume that the hydraulic
conductivity follows a lognormal distribution, and work with
the log‐transformed variable Y(x) = ln[Ks (x)] = hY(x)i + Y′(x),
where hY(x)i and Y′(x) are the mean and the zero mean per-
turbation of the log hydraulic conductivity, respectively.
Accordingly, the hydraulic head and flux may be formally
decomposed as h(x) = h(0)(x) + h(1)(x) +… and q(x) = q(0)(x) +
q(1)(x) + � � �, where numbers in the superscripts stand for the
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order in terms of sY, the standard deviation of the log
hydraulic conductivity.
[12] Substituting decompositions of h(x), q(x), andKs (x) =

exp(Y(x)) ≈KG [1 + Y′(x)], whereKG is the geometric mean of
hydraulic conductivity, into (4) and collecting terms at dif-
ferent orders, for the zeroth order, one has q1

(0)(x) = KGJ, and
q2
(0)(x) = 0, where J = (H1 − H2)/L1 is the steady state mean

hydraulic gradient. The first‐order flux can be written as

qð1Þi ðxÞ ¼ �KG
@hð1ÞðxÞ

@xi
þ Y 0ðxÞqð0Þi ðxÞ; i ¼ 1; 2: ð5Þ

From this equation one can approximate the flux covariance
qij(x, y) = hqi(1)(x)qj(1)(y)i, i, j = 1, 2, as

qijðx; yÞ ¼ K2
G

@2Chðx; yÞ
@xi@yj

� KG qð0Þj ðyÞ @CYhðy; xÞ
@xi

� KG qð0Þi ðxÞ @CYhðx; yÞ
@yj

þ qð0Þi ðxÞ qð0Þj ðyÞCY ðx; yÞ: ð6Þ

Note that the flux covariance is accurate to the first order in
terms of the log conductivity variance (or second order in
terms of the standard deviation of the log conductivity). The
velocity covariance can be readily formulated from flux
covariance using a simple relationship uij (x, y) = qij (x, y)/�

2,
where � is the porosity of the porous media. For simplicity,
we treat porosity as a deterministic constant due to its rela-
tively small variability, although Riva et al. [2008] recently
showed that the variability of porosity was important in
interpreting a forced gradient tracer test.
[13] For an anisotropic separable exponential covariance

function

CY ðx; x0Þ ¼ �2
Y�Y ðx1; x2; x10; x20Þ ¼ �2Y exp � jx1 � x10j

�1
� jx2 � x20j

�2

� �
;

ð7Þ

where sY
2 is the variance of the log conductivity, and l1 and l2

are the correlation lengths of Y in x1 and x2 directions,
respectively, the autocovariance of the head,Ch (x, y), and the
cross covariance between the head and the log hydraulic
conductivity, CYh (x, y), can be derived analytically. The
dimensionless steady state velocity covariances can be writ-
ten as [Lu and Zhang, 2005]:

u11ðx; yÞ
U2�2

Y

¼ 16
X1

m;m1¼1
n;n1¼0

an�2
m cosð�mx1Þ cosð�nx2Þ

�2
m þ �2

n

� an1�
2
m1

cosð�m1y1Þ cosð�n1y2Þ
ð�2

m1
þ �2

n1
Þ Qmn

m1n1

� 4
X1
m¼1
n¼0

an�2
m

�2
m þ �2

n

�
RmnðxÞ cosð�my1Þ cosð�ny2Þ

þRmnðyÞ cosð�mx1Þ cosð�nx2Þ
�þ �Y ðx; yÞ; ð8Þ

u12ðx; yÞ
U2�2

Y

¼ �16
X1

m;m1¼1
n;n1¼0

an�2
m cosð�mx1Þ cosð�nx2Þ

�2
m þ �2

n

� an1�m1�n1 sinð�m1y1Þ sinð�n1y2Þ
�2
m1

þ �2
n1

Qmn
m1n1

þ 4
X1
m¼1
n¼0

an�m�n

�2
m þ �2

n

RmnðxÞ sinð�my1Þ sinð�ny2Þ; ð9Þ

u22ðx; yÞ
U2�2

Y

¼ 16
X1

m;m1¼1
n;n1¼0

an�m�n sinð�mx1Þ sinð�nx2Þ
�2
m þ �2

n

� an1�m1�n1 sinð�m1y1Þ sinð�n1y2Þ
�2
m1

þ �2
n1

Qmn
m1n1

; ð10Þ

where U = KGJ/� is the mean velocity in the mean flow
direction (the x1 direction), am = mp/L1, m = 1, 2, � � �, bn =
np/L2, n = 0, 1, 2,…, an = 1 for n > 0 and an = 1/2 for n = 0.
The terms Rmn and Qm1n1

mn in (8)–(10) are given as

RmnðxÞ ¼ ð�1=L1Þð�2=L2Þ
ð�2

m�
2
1 þ 1Þð�2

n�
2
2 þ 1Þ

� 2 cosð�mx1Þ � e�x1=�1 � ð�1Þmeðx1�L1Þ=�1
h i

� 2 cosð�nx2Þ � e�x2=�2 � ð�1Þneðx2�L2Þ=�2
h i

; ð11Þ

and

Qmn
m1n1

¼ ð�1=L1Þð�2=L2Þ
ð�2

m1
�2
1 þ 1Þð�2

n1
�2
2 þ 1Þ

� �mm1 þ
�1=L1

�2
m�

2
1 þ 1

1þ ð�1Þmþm1
� � ð�1Þme�

L1
�1 � 1

h i� �

� �nn1 þ �n0�n10 þ
�2=L2

�2
n�

2
2 þ 1

	
1þ ð�1Þnþn1

��

�
h
ð�1Þne

�L2
�2 � 1


i
; ð12Þ

where dij is the Kronecker delta function, dij = 1 for i = j,
and dij = 0 otherwise. Note that both Rmn and Qm1n1

mn are
dimensionless. It is also worthy to note that Qm1n1

mn has
several important features. First, Qm1n1

mn is symmetric in
terms of its superscripts and subscripts, i.e., Qm1n1

mn = Qmn
m1n1.

Furthermore, Qm1n1
mn depends on the dimensionless domain

size li = Li /li rather than its actual size Li. Finally, Qm1n1
mn = 0

if either m + m1 or n + n1 is an odd number, which allows us
to compute Qm1n1

mn with significantly reduced computational
efforts.
[14] The expression for u21 has been omitted, because of

the fact that u21 (x, y) ≡ u12 (y, x). Discussions on features of
velocity covariance uij will be skipped here, because they
have been discussed at sufficient detail by Salandin and
Fiorotto [1998] based on Monte Carlo simulations and by
Osnes [1998] using his analytical solutions. Note that even if
the log hydraulic conductivity Y is stationary, the velocity
field in general is nonstationary and the two‐point velocity
covariances uij (x, y) depend on locations x and y, not just on
the lag distance between these two points.
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[15] Since both Rmn and Qm1n1
mn are dimensionless, it is easy

to show from (8)–(10) that velocity covariances are functions
of aspect ratio 	 = L2 /L1, not just the dimensionless domain
size li = Li /li.

2.2. Displacement Covariances

[16] For a particle originating from location x0 = (x01, x02)
T

at t = 0, its trajectory is described by the following kinematic
equation:

dXðt; x0Þ
dt

¼ u½Xðt; x0Þ�; ð13Þ

subject to initial conditionX(0; x0) = x0, whereX(t; x0) stands
for particle’s position at time t and u[X(t; x0)] denotes the
velocity of the particle at t. When the velocity ui (x, t) is a
random space function, so is the particle’s position.
[17] In this study, it is assumed that the effect of local

dispersion is relatively small and can be ignored. This
assumption has been widely used in many studies [Dagan,
1987; Bellin et al., 1992; Dagan, 1994; Hsu et al., 1996;
Salandin and Fiorotto, 1998; Osnes, 1998]. In fact, Zhang
and Neuman [1996] investigated the effect of local disper-
sion and found that it does not have a significant impact on
transport behavior. Fiori [1996, 1998] also found that local
dispersion has no significant effect on the asymptotic longi-
tudinal macrodispersion. Although most of these studies con-
cerned unbounded domains, it is reasonable to assume that the
effect of local dispersion should also be small for bounded
domains.
[18] Let us denoteX(t; x0) asXtwhen there is no confusion,

and formally decompose Xt in terms of the order of sY as
Xt = Xt

(0) + Xt
(1) +…. By substituting this expression and the

decomposition of ui into (13) and collecting terms at separate
orders, one derives equations for Xt

(n), n = 1, 2, …. In par-
ticular, the first‐order perturbation of particle’s position for
the case of unidirectional uniformmean flow can bewritten as
[Osnes, 1998; Lu and Zhang, 2003]:

X ð1Þ
t;i ¼

Z t

0
uð1Þi Xð0Þ

t0

	 

dt0: ð14Þ

From this equation one can formulate the first‐order (in terms
of log conductivity variance) displacement covariance as

XijðtÞ ¼
�
X ð1Þ
t;i X

ð1Þ
t;j

�

¼
Z t

0

Z t

0
uij Xð0Þ

t0 ;Xð0Þ
t0 0

	 

dt0dt00

¼
Z t

0

Z t

0
uij x01 þ Ut0; x02; x01 þ Ut0 0; x02ð Þdt0dt0 0: ð15Þ

Because the velocity field in bounded domains is nonsta-
tionary, the integrand in (15) cannot be reduced to uij (U(t′ −
t″), 0) as in the case of infinite domains. Osnes [1998] gave a
similar expression for Xij as an integral of velocity covar-
iances but did not go further to provide explicit expressions
for Xij and Dij, because his expressions for velocity covar-
iances are relatively complicated. Our concise expressions for

velocity covariances allow us to derive Xij and Dij explicitly.
Substituting uij in (8)–(10) into (15) and integrating the
resultant expressions yield

X11

�2
1�

2
Y

¼ 16l21	
4


2

X1
m;m1¼1
n;n1¼0

man cosð�nx02ÞSmðtÞ
m2	2 þ n2

� m1an1 cosð�n1x02ÞSm1ðtÞ
m2

1	
2 þ n21

Qmn
m1n1

� 8l1	2




X1
m¼1
n¼0

man
m2	2 þ n2

cosð�nx02ÞSmðtÞ GmnðtÞ

þ 2
Ut

�1
� 1þ e�Ut=�1

� �
; ð16Þ

X12

�2
1�

2
Y

¼ � 16l21	
3


2

X1
m;m1¼1
n;n1¼0

man cosð�nx02ÞSmðtÞ
m2	2 þ n2

� n1an1 sinð�n1x02ÞCm1ðtÞ
m2

1	
2 þ n21

Qmn
m1n1

þ 4l1	




X1
m;n¼1

n

m2	2 þ n2
sinð�nx02ÞSmðtÞGmnðtÞ; ð17Þ

and

X22

�2
1�

2
Y

¼ 16l21	
2


2

X1
m;m1¼1
n;n1¼1

n sinð�nx02ÞCmðtÞ
m2	2 þ n2

� n1 sinð�n1x02ÞCm1ðtÞ
m2

1	
2 þ n21

Qmn
m1n1

ð18Þ

where li = Li /li, i = 1, 2, are dimensionless domain sizes, 	 =
L2 /L1 is the aspect ratio of the domain, and some additional
terms are defined as

SmðtÞ ¼ sin �mðx01 þ UtÞ½ � � sinð�mx01Þ; ð19Þ

CmðtÞ ¼ cosð�mx01Þ � cos �mðx01 þ UtÞ½ �; ð20Þ

and

GmnðtÞ ¼ ð�1=L1Þð�2=L2Þ
ð�2

m�
2
1 þ 1Þð�2

n�
2
2 þ 1Þ

� 2 cosð�nx02Þ � e�x02=�2 � ð�1Þneðx02�L2Þ=�2
h i

� 2SmðtÞ
�m�1

� e�
x01
�1 þ ð�1Þme

x01þUt�L1
�1

	 

1� e�

Ut
�1

	 
� �
:

ð21Þ

Note that X21 is the same as X12 and has been omitted. It
should be emphasized that in general, the dimensionless
displacement covariances depend not only on the dimen-
sionless domain size li, i = 1, 2, but also on the domain aspect
ratio 	 = L2 /L1. Only in the case of isotropic hydraulic con-
ductivity fields can the dimensionless displacement covar-
iances be presented in terms of the dimensionless domain size
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alone, because of the fact that 	 = L2 /L1 = (L2 /l)/(L1 /l) = l2 /l1
in this particular case.

2.3. Macrodispersion Coefficients

[19] Once the expressions for solute displacement covar-
iances Xij are found, the macrodispersion coefficients Dij can
be derived easily using Dij = (1/2)dXij /dt. For D11 and D22,
one has

D11

�1U�2
Y

¼ 8l1	4




X1
m;m1¼1
n;n1¼0

mm1anan1Q
mn
m1n1

cosð�nx02Þ cosð�n1x02Þ
ðm2	2 þ n2Þðm2

1	
2 þ n21�

2Þ

� �
m cosð�mx1ÞSm1ðtÞ þ m1 cosð�m1x1ÞSmðtÞ

�

� 4l1	2




X1
m¼1
n¼0

man cosð�nx02Þ
m2	2 þ n2

� ��m�1 cosð�mx1ÞGmnðtÞ þ SmðtÞRmnðx1; x02Þ
�

þ 1� e�Ut=�1

h i
; ð22Þ

D22

�1U�2
Y

¼ 8l1	2




X1
m;m1¼1
n;n1¼1

nn1 sinð�nx02Þ sinð�n1x02ÞQmn
m1n1

ðm2	2 þ n2Þðm2
1	

2 þ n21Þ

� �
m sinð�mx1ÞCm1ðtÞ þ m1 sinð�m1x1ÞCmðtÞ

�
; ð23Þ

where x1 = x01 + Ut, and all other terms have been defined
previously. Since (22) and (23) have been normalized by the
mean velocity U, they can also be considered as dimension-
less macrodispersivities.

3. Numerical Examples

[20] In this section, we first examine the convergence of
the derived analytical solutions of solute displacement
covariances and macrodispersivities. Because the solutions
to Xij and Dij are presented by infinite series (double or
fourfold summations), they have to be truncated into finite
summations, and therefore it is important to investigate the
convergence of these solutions in terms of the number of
terms retained in finite summations. The accuracy of the
first‐order analytical solutions is investigated by comparing
the solutions with those of Monte Carlo simulations and
semianalytical solutions of Osnes [1998].
[21] Once the convergence and accuracy of the solutions

are assured, we then explore some features of the solutions,
such as the general patterns of time‐dependent macro-
dispersivity, the dependence of Xij andDij on the domain size,
correlation lengths, and the particles’ release locations.

3.1. Convergence of Solutions

[22] In the first case (case 1), we consider a rectangle
domain of size L1 = 1,000m and L2 = 500m. The origin of the
coordinator system is at the lower left corner. The constant
heads are prescribed at left and right boundaries asH1 = 15 m
and H2 = 10 m, respectively. The lateral boundaries are
impermeable. The porosity of the porous medium is a con-
stant� = 0.25 in the domain. The log hydraulic conductivity is

a stationary random spatial function with hY i = hln Ksi = 0.0
(geometric mean KG = 1.0 m/d) and sY

2 = 1.0, and it is iso-
tropic with correlation lengths l = l1 = l2 = 50 m, which
means that the dimensionless domain sizes in two directions
are l1 = 20 and l2 = 10, respectively. Themean gradient for this
case is J = 0.005, which yields the first‐order mean velocity
U = 0.02 m/d. Conservative particles are released at point
(0 m, 250 m). In this section, we only describe the conver-
gence of the solutions, while the features of these solutions in
terms of travel distance or travel time will be discussed later.
[23] Let N be the upper bound of indexes (m, n,m1, and n1)

in these truncated finite summations in (16)–(18) and (22)
and (23). Figure 1 illustrates dimensionless displacement
variances X′ii = Xii /l

2sY
2, i = 1, 2, as functions of the dimen-

sionless time (or dimensionless distance) t′ = Ut/l for dif-
ferent numbers of terms N = 5, 10, 20, and 30, where the
maximum dimensionless time is 20 for this case. It seems
from Figure 1 that N = 5 is enough for accurately computing
X11 and larger N does not yield noticeably different results.
However, more terms (N = 10) are required for computing
X22. As mentioned previously, the actual computational cost
for computing Xij can be reduced by a factor of four, by
recognizing the fact thatQm1n1

mn ≡ 0 if eitherm +m1 or n + n1
is an odd number, which means that if a fourfold summation
in (16)–(18) is truncated at N = 10 for all indexes, there are
only 50 × 50 nonzero terms (rather than 104 terms) to be
computed and added up.
[24] The reason for fast convergence of X11 is that com-

pared to the rest two terms with infinity summations, the third
term in (16), which does not involve any summation, is
dominating. In fact, the contribution of the first two terms in
(16), comparing to the magnitude of the third term, is very
small in the case of relatively large domains.
[25] Figure 2 shows the dimensionless macrodispersion

coefficients Dij (or macrodispersivities because these coeffi-
cients have been normalized by the mean velocity U) for
different numbers of terms retained in summations of (22)
and (23). Similar to X11, the solution to D11 converges fas-
ter than D22 does. For the former, a small N value can
produce very accurate results, while N = 20 is needed for the
latter. From the discussion, we may conclude that in general
a larger N is needed for computing Dij than for Xij.
[26] The number of terms, N, required to obtain accurate

approximations of Xij and Dij depends on the correlation
lengths l1 and l2. For the purpose of comparison, we cal-
culate Xij andDij for a case similar to the previous one but the
correlation lengths are reduced from50m tol1 =l2 =l = 10m
(dimensionless domain size L1/l1 = 100 and L2/l2 = 50).
When the correlation lengths decrease, more terms are needed
to accurately represent the solutions. This conclusion is con-
sistent with the observations by Zhang and Lu [2004], which
stated that more terms are required to approximate head mo-
ments or flux moments if the length scale of the conductivity
field decreases. In addition, similar to the previous example,
X11 and D11 converge fast than X22 and D22 (not shown). For
example, N = 10 is sufficient to achieve convergence for X11

and D11, while N = 30 is needed for accurately computing
both X22 and D22.
[27] Based on our numerical results, convergence of these

first‐order solutions can be summarized as follows. For a
fixed dimensionless domain size, in general, Xij converges
fast than Dij, and X11 and D11 converge fast than their coun-
terparts X22 and D22. On the other hand, for a fixed domain
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size, the rate of convergence for both Xij and Dij decreases if
the correlation lengths decrease.

3.2. Accuracy of Solutions

[28] To investigate the accuracy of the first‐order analytical
solutions, we conducted two different comparisons. The
solutions are compared with both the Monte Carlo simu-
lations and the semianalytical solutions of Osnes [1998].
3.2.1. Comparison With Monte Carlo Simulations
[29] Monte Carlo simulations (case 2) with the particle

tracking method have been often used to compute displace-

ment covariances [Smith and Schwartz, 1980; Rubin, 1990;
Bellin et al., 1992; Schwarze et al., 2001; Lu and Zhang,
2003]. In this study, we conducted Monte Carlo simulations
with particle tracking method in a rectangle domain of size
L1 = 80 m and L2 = 40 m, which was uniformly discretized
into 80 × 40 square elements. Similar types of boundary
conditions were specified: no‐flow conditions prescribed at
two lateral boundaries and constant heads specified on the left
and right boundaries as H1 = 10.5 m and H2 = 10.0 m. The
mean of the log hydraulic conductivity was again given as
hY i = 0.0, and the variance and the correlation lengths of the

Figure 2. Convergence of time‐dependent dispersivity: (a) D11 and (b) D22 in terms of N, the number of
retained terms for indexes in infinity series of (22) and (23) for the case with l = 50 m. For comparison
purposes, solutions from Dagan [1984] for unbounded domains are also plotted.

Figure 1. Convergence of time‐dependent displacement covariances: (a) X11 and (b) X22 in terms ofN, the
number of retained terms for indexes in infinity series of (16)–(18) for the case with l = 50 m.
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log hydraulic conductivity field were sY
2 = 0.25 and l1 = l2 =

10.0 m, respectively.
[30] We first generated 50,000 two‐dimensional 81 × 41

(hydraulic conductivity values being assigned at nodes rather
than elements) realizations of zero mean and unit variance
with a separable covariance function and given correlation
lengths, using a KL‐based random field generator [Zhang and
Lu, 2004]. These zero mean, unit variance realizations were
then scaled to obtain realizations with the given mean and
variance.
[31] For each realization of the log hydraulic conductivity

field, the corresponding velocity field was obtained by solv-
ing the steady state, saturated flow equation, i.e., (1)–(3),
using the Finite Element Heat and Mass Transfer code
(FEHM) [Zyvoloski et al., 1997]. A conservative particle was
then placed at location (x01,x02) = (20 m, 20 m) and its posi-
tionwas recorded at some specified times until the particle left
the domain. This procedure was repeated for 50,000 realiza-
tions. The particles’mean position and their spreading at any
specified time were then calculated using particles’ positions
at that time from all Monte Carlo simulations. Because par-
ticles may leave the flow domain earlier in someMonte Carlo
simulations than in others, we calculate the particle’s mean
position and spreading only up to the time when the fastest
particle out of all 50,000 particles left the system. After that,
we are not able to compute the statistics of all particles
because some particles have already exit from the system. For
this reason, we have chosen a relative small sY

2 (= 0.25) so that
the fastest particles will not move too fast comparing to the
mean position of all particles. The results from Monte Carlo
simulations and those from analytical solutions are compared
to assess the accuracy of first‐order analytical solutions.
[32] Figure 3 compares X11 and X22 derived from analytical

solutions (solid lines, ANA) and two sets of Monte Carlo
(MC) simulations with 10,000 and 50,000 realizations, respec-
tively. Figure 3 shows that the results from two sets of MC
simulations are very close, which means that 50,000 realiza-
tions are sufficient for the MC method to converge. In addi-
tion, Figure 3 also demonstrates that the difference between
analytical solutions andMonte Carlo results are very small for

X11, but relatively large for X22 even though the variability of
log hydraulic conductivity is quite small in this case.
[33] Comparison of D11 and D22 computed from analytical

solutions and the MC method are illustrated in Figure 4.
Figure 4 indicates that while D11 from analytical solution
matches well with that of Monte Carlo simulations, the dis-
crepancy on D22 is relatively larger, especially at the later
time, although their general patterns are similar.
[34] The difference between first‐order analytical solutions

and Monte Carlo results may be ascribed to several sources.
First, Monte Carlo simulations may suffer from numerical
errors, which depend on the numerical method and the spatial
and temporal discretization. Flow or transport problems in
heterogeneous porous media with small correlation lengths
usually require fine spatial discretization. Monte Carlo meth-
ods also suffer from statistical errors that stem from approxi-
mating the random hydraulic conductivity field with a finite
number of realizations. To reduce this type of errors, one may
need to conduct a large number of simulations. The actual
number of required simulations depends on the spatial vari-
ability of the process. In this example, the numerical grid used
in Monte Carlo simulations is sufficiently fine (10 grids per
correlation length) to reduce the effect of numerical dis-
cretization, and a considerably large number of realizations
are used to reduce the statistical errors. Our results show that
increasing the number of Monte Carlo simulations from
10,000 to 50,000 does improve the results a little bit, but the
difference of X22 between MC and analytical solutions are
still large. The MC results with 40,000 realizations (not
shown) are almost identical to those of 50,000 realizations,
which again means that 50,000 realizations are sufficiently
for this case. In short, we may consider these Monte Carlo
results as true solutions to Xij and Dij.
[35] The second possible source of errors that contributes to

the difference between MC results and analytical solutions is
that analytical solutions are accurate only up to first order in
terms of the log conductivity variance. There are two ap-
proximations involved in the derivation of analytical solu-
tions. First, the particle’s trajectory has been approximated by
Xt ≈ Xt

(0) + Xt
(1) and higher‐order terms Xt

(n), n ≥ 2, have been

Figure 3. Comparison of time‐dependent displacement covariances: (a) X11 and (b) X22 derived from
Monte Carlo simulations and the first‐order analytical solutions.
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truncated. In addition, Xt
(1) has been related to the velocity

perturbation in (14) by approximating the actual position Xt

using the zeroth‐order term Xt
(0). Both of these approxima-

tions may introduce errors to the first‐order solutions. To
identify the dominating source of errors, we replace the
position term x01 + Ut in (19) and (20) at time t by the time‐
dependent mean position obtained from Monte Carlo simu-
lations, and the results, labeled as ANA_MC, are also compared
in both Figures 3 and 4. It seems that this correction does not
improve the results. We may conclude that the discrepancy
between Monte Carlo results and analytical solutions may
be mainly due to neglecting higher‐order terms in approxi-
mating Xt.
[36] Although perturbation methods have been success-

fully applied in simulating flow in heterogeneous porous
media with large variability, these methods in transport
problems are usually limited to relatively small variability
[Morales‐Casique et al., 2006b; Liu et al., 2007]. The
application of stochastic theories to problems with large
variability sY

2 is still a challenge. Our analytical solutions to
displacement covariance and effective dispersivity are also
limited to small variability of the log hydraulic conductivity
fields.
3.2.2. Comparison With Osnes’s [1998] Solutions
[37] Osnes [1998] derived semianalytical solutions for

displacement covariances X11 and X22 for the same problem
as in this study, but his solutions are expressed as integrals of
the velocity covariances, which in turns are presented as
several complicated functions. This means that his solutions
to Xij need to be computed by numerical integration. In
addition, his solutions were derived for isotropic porous
media. In case 3, we try to reproduce Osnes’s example
[Osnes, 1998, Figure 6], in which he compared his solutions
with Dagan’s solutions [Dagan, 1984] for a rectangular
domain of dimensionless size L1 /l = 20 and L2 /l = 14 with
particles initially located at (x01 /l, x02 /l) = (1, 7) and (x01 /l,
x02 /l) = (5, 7), respectively. It should be noted that for the
case of isotropic hydraulic conductivity, analytical solutions
depend on the dimensionless domain size and the actual size
of the domain is irrelevant.

[38] Figure 5 compares the analytical solutions of dimen-
sionless displacement covariances with solutions of Osnes
[1998, see Figure 6]. Also compared in Figure 5 is the ana-
lytical solution from Dagan [1984] for unbounded domains.
Figure 5 indicates that analytical solutions to Xij presented in
this paper is almost identical to those ofOsnes [1998], but our
solutions are much simple and are presented explicitly in
terms of the statistics of the log hydraulic conductivity field.
As observed by Osnes [1998], displacement covariance X11

computed from bounded domains is larger than its counter-
part from unbounded domain, while it is opposite for X22.

3.3. Characteristics of Solutions

[39] Upon investigating on the convergence and accuracy,
it is appropriate to explore some general features of solute
transport in bounded domains using the first‐order analytical
solutions.
3.3.1. General Features
[40] We start our discussion from the patterns of dimen-

sionless displacement covariance Xii and macrodispersivity
Dii as illustrated in Figures 1 and 2. Figure 1 shows that X11

increases almost linearly with time and X22 increases with
time at a variable rate. Detailed variation of the rate can be
better illustrated and explained using Figure 2, which is
exactly the rate of change of X11 and X22 over time, because
curves in Figure 2 are a half of the derivatives of the corre-
sponding curves in Figure 1.
[41] It is interesting to see the differences between the

macrodispersion coefficients for bounded and unbounded
domains. The results for the latter are computed from the
formulation ofDagan [1984]. It is seen from Figure 2 that the
longitudinal macrodispersion coefficient D11 for unbounded
domains has an asymptotic value at large dimensionless time
and D11 is always smaller than that of bounded domains. A
possible explanation is that while the lateral no‐flow
boundaries in bounded domains may limit the spreading of
particles in the transverse direction, there is no such restriction
in unbounded domains and therefore the macrodispersion
coefficient D22 could be much large comparing to that in the

Figure 4. Comparison of time‐dependent dispersivity: (a) D11 and (b) D22 derived from Monte Carlo
simulations and the first‐order analytical solutions.
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bounded domains, which in turn may lead to smaller D11 in
the unbounded domains.
[42] Figure 2a shows that the longitudinal effective dis-

persivity increases very fast at the beginning, then becomes
more or less stabilized after the particles travel for about 5
correlation lengths, and increases again at later time when the
particles are close to the downstream constant head boundary.
This clearly indicates that (1) at the beginning X11 increases
slowly (small values in the first segment of Figure 2a); (2) the
continuing increase of D11 indicates that the plume always
expands in the x1 direction; and (3) at the later time when
particles are close to the downstream constant head boundary,
X11 increases at a relatively high rate, which will be explained
later. The higher increase rate ofX11 at later time has also been
observed by Morales‐Casique et al. [2006b], who evaluated
numerically macrodispersivity using the moment methods for
the unconditional case in which the longitudinal domain size
is 12lY [Morales‐Casique et al., 2006b, Figure 21].
[43] In the transverse direction (x2), however, the pattern

of the time‐dependent D22 is quite different from that of D11.
First, although the size of plume in the transverse direction
also expands over the time, the rate of expansion may
decrease (see Figure 2b,Ut/l = 5∼12.5). In addition, there are
two peaks on the curve as compared to the single peak for
unbounded domains. The same pattern has also been dis-
covered by Morales‐Casique et al. [2006b] for the uncon-
ditional case with a longitudinal domain size of 12lY
[Morales‐Casique et al., 2006b, Figure 21]. All these fea-
tures should be ascribed to boundary effects. Near the
downstream boundary, the dimensionless effective dis-
persivity D22 is close to zero, which means that X22 stops
increasing at this moment. The reason is that close to this
boundary, the streamlines have to be perpendicular to the
constant head boundary and the velocity component in the x2
direction is zero. This may not be sufficient to explain

quantitatively the patterns of Dii curves, especially the time‐
dependent behaviors of D22. Here we provide a more rigor-
ous explanation.
[44] It is well known that macrodispersion Dii can be

derived directly from velocity covariances [Dagan, 1989]

DiiðtÞ ¼
Z t

0
uiiðx01 þ Ut0; x02; x01 þ Ut; x02Þdt0: ð24Þ

As mentioned previously, because of nonstationarity of the
velocity field, the integrand cannot be reduced to uii (U(t − t′),
0) as in the case of infinite domains. In addition, because the
arguments (x01 + Ut′, x02) and (x01 + Ut, x02) of the integrand
in (24) represent particle’s mean positions at time t and t′,
respectively, this equation states that Dii at time t is the
cumulative effect of velocity covariance uii between the cur-
rent position at time t and all points along particle’s path (t′ < t).
For case 1 shown in Figures 1 and 2, we calculated a number
of velocity covariance uii (t, t′), where both t and t′ are dimen-
sionless times, and plotted them in Figure 6. For instance,
u11 (15, t′) stands for the covariance function between
dimensionless time t = 15 and t′, for all t′ ≤ 15. The area under
this curve represents the value of D11 at dimensionless time
t = 15. Note that the highest point on each of these covariance
functions is the velocity variance at these points along the
mean path, which in this case is along the line x2 = 250 m
because the particle was released at (0 m, 250 m). The velocity
variances u11 and u22 along this line are illustrated in Figure 7,
where squares and cycles on two curves represent the values
that correspond to the highest values of curves in Figures 6a
and 6b.
[45] Figure 6a shows that u11 is positive for all t, which,

from (24), means that D11 always increases with time. Note
that the velocity covariance uii (t, t′) is proportional to the
velocity variance suii

2 (t) along the path. It is easy to see from

Figure 5. Comparison of time‐dependent displacement covariances: (a) X11 and (b) X22 computed from
(16)–(18) with those from Osnes [1998], for particles released at two different locations. For comparison
purposes, solutions from Dagan [1984] for unbounded domains are also plotted.
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Figure 6a that at the earlier time and the later timeD11 increases
faster. At the early time, although u11 decreases (see Figure 7),
the increase of t, i.e., the interval of integral in (24), makes the
value of integral increase quickly. At the later time, the faster
increase ofD11 is largely due to larger velocity variance when
the particle travels close to the downstream boundary (see
Figure 7).
[46] The feature of the velocity covariance function u22 is

slightly different from that of u11, as displayed in Figure 6b.
The most important difference is that u22 (t, t′) can be nega-
tive, which explains why D22 decreases in some time inter-
vals. For example, the area under the curve u22 (5, t′) is larger
than that under the curve u22(10, t′), whichmeans thatD22(10)
is smaller than D22(5). Near the downstream boundary,
velocity variance su2

2 approach zero (see Figure 7), so are the
velocity covariance u22 (t, t′) and macrodispersion coefficient
D22 (t).
[47] It is interesting to see from Figure 7 that the velocity

variances for bounded domains are significantly different
from those of unbounded domains. For example, the variance
of longitudinal velocity is larger than that for the unbounded
domain (3/8), while the variance of the transverse velocity is
slightly smaller than that for the unbounded domain (1/8).
3.3.2. Effects of Domain Sizes
[48] Asmentioned earlier, the displacement covariances and

effective dispersivity in a statistically anisotropic hydraulic
conductivity field depend not only on the dimensionless
domain size l1 and l2, but also on the aspect ratio of the
domain 	 = L2 /L1, as illustrated in (16)–(18), (22), and (23).
This seems contradicting to Osnes’s conclusion, which states
that the effects of varying domain aspect ratio 	 to the velocity
covariance (and thus the displacement covariance and mac-
rodispersivity) are small.
[49] To explore the effect of the domain size on displace-

ment covariances and macrodispersivity, we compute a series
of analytical solutions with a fixed length L1 = 1000 m and a
variable width L2 = 100, 200, 300, 400, 500, 1000, 2000, and
5000 m. The correlation length is fixed in the x1 direction at
l1 = 10 m, while it varies in the x2 direction in such a way
that the dimensionless length in x2 direction is fixed at L2 /l2 =
10. As a result, dimensionless sizes in two directions are fixed
at L1 /l1 = 100 and L2 /l2 = 10.

[50] Figure 8 depicts the dimensionless displacement
covariances as functions of dimensionless time for various
values of the ratio 	. Figure 8a indicates that for 	 < 1, its value
has little effect on dimensionless X11. In fact, when 	 = L2 /L1
varies in the range of 0.1 to 1, i.e., the length of the domain is
as large as 10 times its width,X11 is almost unchanged (curves
are almost overlapped). However, further increase of 	 from 1
to 5 makes X11 change significantly. In particular, when 	 is
small, X11 increases at a relatively uniform rate. Intuitively,
this seems correct, when the width is small (a narrow domain),
dispersion of particles in the transverse direction is limited.
When 	 is large, dispersion in the longitudinal direction is
slow at beginning because more dispersion in the transverse
direction is allowed. Of particular interest phenomena is that
at the final time when the downstream boundary is reached,
X11 is a constant, regardless the aspect ratio of the domain.
This may be explained mathematically using (16). Since am

are solutions of equation sin(amL1) = 0, and the particles are
initially at (x01 = 0, x02 = 250m), at the downstream boundary,
both Sm (t) and Sm1 (t) in (16) are zero. As a result, at this

Figure 6. Velocity covariances computed from (8)–(10): (a) u11(t1, t′) and (b) u22(t1, t′) as a function of t′
for some selected t1.

Figure 7. Velocity variances along x2 = L2 /2. The squares
and circles correspond to the highest points in Figures 6a
and 6b, respectively.
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boundary, only the third term in (16), which is independent of
	, contributes to X11.
[51] The dependence of X22 on the aspect ratio is com-

pletely different from that of X11, as shown in Figure 8b. For a
small 	 (≤0.5),X22 increases quickly at the beginning, more or
less stabilizes at a certain level that increases with 	, and then
increases slightly near the downstream boundary.When 	 < 1,
a larger 	 in general leads to a larger X22, because a larger
width allows more space for particles to disperse in the
transverse direction. Further increase of 	 (i.e., L2 > L1) may
lead to slow dispersion in the transverse direction at the early
time. It is of interest to note that at a large 	, X22 increases
almost linearly. This may imply that the nonlinear behavior of
curves for 	 < 1 may be ascribed to the lateral boundaries that
are perpendicular to the transverse direction.

[52] The effect of the domain aspect ratio 	 on the nor-
malized longitudinal and transverse macrodispersivities aL =
D11 /l1UsY

2 and aT = D22 /l1UsY
2 are illustrated in Figure 9.

When the aspect ratio is small, the longitudinal macro-
dispersivity increases very fast at the beginning and then
increases linearly at a much slow rate until approaching the
right boundary, where it increases again at a higher rate. For
large 	 (say, 	 = 5.0), the longitudinal macrodispersivity
increases almost linearly, and the boundary effect is rela-
tively small. It seems that such behaviors of aL represent the
effect of lateral no‐flow boundaries. The effect of domain
aspect ratio 	 on the transverse macrodispersivity aT is
completely different from that on aL. When 	 is smaller than
one, aT increases quickly at the early time and then decrease
gradually because of limited space for particles to disperse in

Figure 8. Time‐dependent displacement covariances: (a)X11 and (b)X22 as functions of the domain aspect
ratio 	 = L2 /L1, for fixed dimensionless domain sizes L1 /l1 = 100 and L2 /l2 = 10.

Figure 9. Time‐dependent dispersivity: (a) D11 and (b) D22 as functions of the domain aspect ratio
	 = L2 /L1, for fixed dimensionless domain size L1 /l1 = 100 and L2 /l2 = 10.
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the transverse direction. For a large 	, aT keeps on
increasing until the particle’s mean position close to the
downstream boundary, it then decreases because it has to be
zero the downstream boundary.
3.3.3. Effect of Particles’ Initial Locations
[53] Osnes [1998] claimed that the dependence of dis-

placement covariances on the initial particle position is small.
To investigate the effect of particles’ release locations on the
displacement covariances and macrodispersivities, Xii andDii

are computed for an array of initial locations in a domain of
1000 m × 500 m and correlation lengths of l1 = l2 = 20 m.
Again, the similar boundary conditions as in the previous
cases are adopted with constant heads of 10.5 m and 10.0 m at
the left and right boundaries, respectively. This array of initial
release locations includes 6 points resulted from combina-
tions of x01 /l1 = 5 and 10, and x02 /l2 = 2.5, 5, and 10. Results
are presented in Figures 10 and 11. Figure 10 indicates that
the release location has little impact on the longitudinal dis-
placement covariance X11, as the curves with different release
locations are almost overlapped. Different lengths of these
curves are due to the variable total travel distance. In contrast
to X11, X22 is much more sensitive to the release location, as
shown in Figure 10b. Comparison of two sets of curves with
x01 /l1 = 5, and 10 indicates that the effect of x01 on the X22 is
not significant, except that the boundary effect occurs earlier
for the cases with x01 /l1 = 10 because of the short travel
distance. The difference between these two sets of curves are
even small when the release location is very close to one of the
lateral boundaries (the solid line and squares, x02 /l2 = 2.5).
However, for either x01 /l1 = 5 or 10, the effect of x02 is sig-
nificant. In the cases that the release location is close to one
of the lateral boundaries, the displacement covariance in
the lateral direction is small, as the lateral boundary limits the
dispersion in this direction. The latter cases are similar to the
cases with a small aspect ratio 	 discussed earlier. The sen-
sitivity of X22 to the release location may be used to identify

contaminant sources if boundaries are known, or to indicate
some flow boundary conditions (i.e., presence of low perme-
able units). Similar observations can be made from Figure 11,
which shows the dependence of dimensionless macro-
dispersivities on particles’ initial locations.

4. Application to Borden Site

[54] Our analytical solutions, as most other similar solu-
tions, are developed based on a number of assumptions. The
assumptions include dimensionality of the problem and shape
of the domain, appropriate boundary conditions, simplified
flow scenarios (steady state, uniform mean flow), stationary
permeability field with a separable exponential covariance
function, and so on. As a consequence, the solutions are only
applicable if the reality is not significantly away from these
assumptions. It also makes it difficult to compare our model
results against field or laboratory experimental results pub-
lished in literature, as most of experiments were not designed
for verifying stochastic models.
[55] In this section, we intend to apply our solutions to an

unconfined sand aquifer at the Borden site, one of the most
extensively studied sites [MacKay et al., 1986; Freyberg,
1986]. The aquifer extends about 9 m beneath the nearly
horizontal quarry floor and is underlain by a thick, silty clay
deposit, which allows us to approximate the three‐dimensional
transport problem by a two‐dimensional model. In fact, it has
been found that the vertical spreading at the site is negligible
[Freyberg, 1986]. This has also been supported by the finding
that the vertical integral scale of the aquifer is much smaller
than that in the horizontal plane [Sudicky, 1986]. Several
studies showed that this assumption yield reasonably good
results.
[56] There is a considerable amount of data in the literature

regarding the statistics of the aquifer permeability and flow
properties, although some of these data may be inconsistent.

Figure 10. Dependence of dimensionless displacement covariances: (a) X11 and (b) X22 on particles’
released locations.
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For example, the value of the horizontal integral scale was
2.7m in the work by Freyberg [1986], 2.8m in the work by
Naff et al. [1988], and 5.14m in the work by Bellin et al.
[1996]. Different values for the variance of the log conduc-
tivity have been used, and in some studies, this variance was
adjusted by multiplying 0.74 because of the vertical average
of the permeability field. In this studies, these parameters are
taken as sY

2 = 0.172 [Bellin et al., 1996] and lx = ly = 2.7 m.
The mean velocity is 0.091 m/d [MacKay et al., 1986].
[57] Displacement covariance as a function of time was

determined for two nonreactive species, bromite and chloride
[Freyberg, 1986, Table 3]. We calculated apparent dis-
persivity values a11 and a22 from observed displacement
covariances and themean velocity. Because our model is only

applicable to point sources, following Freyberg [1986], for
nonzero initial displacement covariances, appropriate initial
values have to be assigned: X11(0) = 1.8 m2 and X22(0) = 2.6
m2 [Freyberg, 1986].
[58] We assume the simulation domain is a rectangle of a

size L1 = 400 m and L2 = 200 m, where x1 is aligned with the
mean flow direction. Displacement covariances derived from
our solutions are compared in Figure 12 against the observed
values. Though not perfect, the analytical solutions match the
observed values reasonably well. If the averaged values of
these tracers are used, as by Freyberg [1986], the match will
be improved.
[59] Figure 13 compares macrodispersivities computed

from our analytical solutions and those from observed dis-

Figure 11. Dependence of dimensionless dispersivity: (a)D11 and (b)D22 on particles’ released locations.

Figure 12. Comparison of displacement covariances computed from analytical solutions against observa-
tions: (a) X11 and (b) X22 for Borden site.
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placement covariances. The scale‐dependent longitudinal
macrodispersivities estimated from plume spreading increased
from 0.06 at early time to 0.43 m. The asymptotic longitudinal
macrodispersivity obtained from our analytical solution is
0.484m, which is almost the same as the value of 0.49m
[Freyberg, 1986] and 0.50m [Zhang and Neuman, 1990;
Rajaram and Gelhar, 1991]. The peak transverse macro-
dispersivity is about 0.04m, which is close to 0.05–0.06 m
derived from plume moments [Freyberg, 1986; Zhang and
Neuman, 1990; Rajaram and Gelhar, 1991].

5. Conclusions and Discussions

[60] In this study, we derived first‐order analytical solu-
tions to the displacement covariances Xij andmacrodispersion
coefficients Dij of conservative solute transport in two‐
dimensional, bounded heterogeneous porous media under
uniform mean flow conditions. The solutions are explicitly
related to statistics of the log hydraulic conductivity, such as
its variance and correlation lengths.
[61] Because our analytical solutions are presented as

infinity series, we first examined the convergence of these
series in terms of the number of terms that have to be retained
in the truncated finite summations. Our convergence study
shows that although the rate of convergence depends on
dimensionless domain size (the ratio of the domain size to the
correlation length), in general, the longitudinal displacement
covariance X11 converges faster than the transverse dis-
placement covariance X22 does. In addition, Xij converge
faster than Dij do. Furthermore, if all other parameters are the
same, both Xij and Dij converge faster if the dimensionless
domain size is small.
[62] The accuracy of the first‐order solutions are assessed

by comparing our solutions with the semianalytical solu-
tions of Osnes [1998] and Monte Carlo simulations. The
comparison shows that our solutions for the displacement
covariances are almost identical to the results from Osnes’s
semianalytical solutions for the example illustrated in Osnes
[1998] with isotropic conductivity fields. The comparison
of the first‐order solutions with the Monte Carlo results

indicates that both X11 and D11 from analytical solutions
are very close to Monte Carlo results, although relative
large discrepancies are observed for X22 and D22, espe-
cially at late time. Possible sources of such discrepancies
have been investigated and it is concluded that the dis-
crepancies may stem from the truncation of the higher‐
order terms, Xt

(n), n ≥ 2, in approximating Xt.
[63] The macrodispersivities for bounded domains are

different from those for unbounded domains. Unlike in
unbounded domains, the longitudinal macrodispersivity for
bounded domains does not have an asymptotic value at large
dimensionless time, and instead it increases quickly near the
downstream constant head boundary. In addition, D11 for
unbounded domains is always smaller than that in bounded
domains, and accordingly, the transverse macrodispersivity
D22 in unbounded domain is larger than that in bounded
domain. The major mechanism for these differences is the
effect of lateral no‐flow boundaries in our bounded domain
models.
[64] Some factors that controlling the macrodispersion

have been investigated, including the domain aspect ratio and
the particles’ initial locations. It is important to note that Xij

and Dij depends not only the dimensionless size of the
domain, but also on its aspect ratio L2 /L1. The dependence of
Xij and Dij on the particles’ initial location has been investi-
gated at detail. Our results indicate that while this dependence
is very small for X11 and D11, the release location has a sig-
nificant impact on both X22 and D22. This contradicts to
Osnes’s [1998, p. 212] conclusion that “the dependence of
initial particle position on the displacement coefficients is
shown to be small.”
[65] The solutions are limited to two‐dimensional rectan-

gular domains with particular boundary conditions: constant
head at two sides and no‐flow conditions on lateral bound-
aries. It is possible to extend the solutions to three dimension
cases, but expressions for both Xij andDijwill include sixfold
summations, which reduces the convergence rate of the so-
lutions. It is also possible to derive solutions for other types of
boundary conditions by first solving the first‐order flux
covariance as in the work by Lu and Zhang [2005], and then

Figure 13. Comparison of dispersivity computed from analytical solutions against observations: (a) a11

and (b) a22 for Borden site.
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following the approach shown in this paper. Although in
reality, flow and transport take place in three‐dimensional
space, in some cases they can be well approximated as two‐
dimensional flow. As demonstrated in section 4 using the data
from the Borden site, the displacement covariances and
macrodispersivity computed form analytical solutions are
reasonably match the field observations, indicating that our
solutions may be applicable to predict solute transport at the
field scale, even though the assumptions on which the solu-
tion were derived may not be satisfied.
[66] Finally, it should be pointed out that in order to apply

the results of the stochastic analysis to a field situation, it is
necessary to invoke the ergodic hypothesis. This hypothesis
refers to a condition at which a property of interest obtained
from the space average is equivalent to that from the ensemble
average. Though some studies indicate that macrodispersivity
may significantly differ from realization to realization even
after a few hundreds of heterogeneous scales [Trefry et al.,
2003], while other studies show that the macrodispersivity
behaves ergodically at relatively small distances from the
injection [Jankovic et al., 2003; Morales‐Casique et al.,
2006b]. Based on their nonlocal and localized analyses of
nonreactive transport in bounded, heterogeneous porous
media, Morales‐Casique et al. [2006a, 2006b] showed that
although solute transport in some cases may not be described
by means of Fick’s law with a constant or variable macro-
dispersion coefficient, under some conditions, the mean
transport equation can be localized to yield an advection‐
dispersion equation with a macrodispersion tensor that varies
generally in space‐time. They illustrated several examples in
which both the domain size and source size are relatively
small. Interestingly, the patterns of Dii [Morales‐Casique
et al., 2006b, Figure 21] for the unconditional case with a
domain size 12lY × 4lY and source size of 0.8lY × 0.8lY are
the same as our corresponding patterns as shown in Figures 2
and 9.
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ratory Directed Research and Development (LDRD) project (20070441ER).
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